Bone marrow-derived endothelial progenitor cells confer renal protection in a murine chronic renal failure model.

نویسندگان

  • Odongua Sangidorj
  • Seung Hee Yang
  • Hye Ryoun Jang
  • Jung Pyo Lee
  • Ran-hui Cha
  • Sun Moon Kim
  • Chun Soo Lim
  • Yon Su Kim
چکیده

Endothelial cell damage and impaired angiogenesis substantially contribute to the progression of chronic renal failure (CRF). The effect of endothelial progenitor cell (EPC) treatment on the progression of CRF is yet to be determined. We performed 5/6 nephrectomy to induce CRF in C57BL/6 mice. EPCs were isolated from bone marrow, grown in conditioned medium, and characterized with surface marker analysis. The serial changes in kidney function and histological features were scrutinized in CRF mice and EPC-treated CRF (EPC-CRF) mice. Adoptively transferred EPCs were present at the glomeruli and the tubulointerstitial area until week 8 after transfer. In CRF mice, renal function deteriorated steadily over time, whereas the EPC-CRF group showed less deterioration of renal function as well as reduced proteinuria along with a relatively preserved kidney structure. Renal expression of proinflammatory cytokines and adhesion molecules was already decreased in the EPC-CRF group at the early stage of disease, at which point the renal function and histology of CRF and EPC-CRF mice were not different. Angiogenic molecules including VEGF, KDR, and thrombospondin-1, which were decreased in the CRF group, were restored by EPC treatment. In conclusion, EPCs trafficked into the injured kidney protected the kidney from the inflammatory condition and consequently resulted in functional and structural renal preservation. Our study suggests EPCs as a potential candidate for a novel therapeutic approach in CRF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is biofilm a cause of silent chronic inflammation in haemodialysis patients? A fascinating working hypothesis.

microcinematographic measurements on peritubular blood flow under control conditions and after temporary ischemia. A. The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. et al. Blood-derived angioblasts accelerate blood-flow restoration in diabeti...

متن کامل

Evaluation of Therapeutic Effects of Autologous Bone Marrow Mesenchymal Stem Cells to Prevent the Progression of Chronic Nephropathy in Renal Transplant

Background Chronic allograft nephropathy(CAN)  is one of the most common causes of chronic and end stage renal disease. It  is defined with Mainly tubular atrophy and  interstitial fibrosis and no evidence of any other etiology, or functional disorder that caused at least three months after transplantation . Control of risk factors (HTN,DM,HLP, …) and limiting  usage of calcineurin inhibitors...

متن کامل

Deficiency of either P-glycoprotein or breast cancer resistance protein protect against acute kidney injury.

The kidney has a high capacity to regenerate after ischemic injury via several mechanisms, one of which involves bone marrow-derived (stem) cells. The ATP binding cassette transporters, P-glycoprotein and breast cancer resistance protein, are determinants for the enriched stem and progenitor cell fraction in bone marrow. Because they are upregulated after acute kidney injury, we hypothesized th...

متن کامل

Stromal cell-derived factor-1 (SDF1)-dependent recruitment of bone marrow-derived renal endothelium-like cells in a mouse model of acute kidney injury

Ischemic acute kidney injury (AKI) is the most key pathological event for accelerating progression to chronic kidney disease through vascular endothelial injury or dysfunction. Thus, it is critical to elucidate the molecular mechanism of endothelial protection and regeneration. Emerging evidence indicates that bone marrow-derived cells (BMCs) contribute to tissue reconstitution in several types...

متن کامل

Regenerative Medicine for the Kidney: Renotropic Factors, Renal Stem/Progenitor Cells, and Stem Cell Therapy

The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 299 2  شماره 

صفحات  -

تاریخ انتشار 2010